ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD
(Department of Computer Science)

WARNING
1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE’S OWN WILL BE PENALIZED AS DEFINED IN “AIOU PLAGIARISM POLICY”.

Level: MBA-IT Total Marks: 100
Pass Marks: 40

ASSIGNMENT No. 1
(Units: 1–4)

Note: All questions are compulsory and carries equal marks.

Q. 1 (a) Which of the following instructions should be allowed only in kernel mode?
   i) Disable all interrupts
   ii) Read the time-of-day clock
   iii) Set the time-of-day clock
   iv) Change the memory map
(b) What is a race condition? Explain the difference between busy waiting and blocking.

Q. 2 (a) Consider a memory system with a cache access time of 100ns and a memory access time of 1200ns. If the effective access time is 10% greater than the cache access time, what is the hit ratio H?
(b) Why is the shell not part of the operating system itself?

Q. 3 Consider the following set of processes with the arrival time and the length of the CPU burst time given in milliseconds:

<table>
<thead>
<tr>
<th>Process</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival Time</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Burst Time</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Which CPU scheduling algorithm listed below yields the shortest average turnaround time?
(a) FCFS (First-Come-First-Served)
(b) SJF (Shortest Job First; without preemption)
Q. 4 A process contains 5 virtual pages on disk and is assigned a fixed allocation of four page frames in main memory. The following Page Trace occurs.

\[
\begin{array}{ccccccc}
1 & 0 & 2 & 2 & 1 & 4 & 4 \\
1 & 0 & 1 & 2 & 0 & 3 & 0 \\
4 &
\end{array}
\]

(a) Show the successive pages residing in the four frames using the LRU replacement policy. Assume that the frames are initially empty. Compute the HIT ratio for LRU in the main memory.
(b) Repeat Part (a) for the FIFO replacement policy. Compute the HIT ratio for FIFO in the main memory.

Q. 5 Define and explain the following allocation algorithms:
(a) First-Fit
(b) Best-Fit
(c) Worst-Fit

**ASSIGNMENT No. 2**

(Units: 5–8)  
Total Marks: 100  
Pass Marks: 40

*Note: All questions are compulsory and carry equal marks.*

Q. 1 (a) The clock interrupt handler on a certain computer requires 2 msec (including process switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of the CPU is devoted to the clock?
(b) Why are output files for the printer normally spooled on a disk before being printed, instead of being directly from the application program?

Q. 2 Disk requests come in to the disk driver for cylinders 10, 22, 2, 40, 6 and 38, in that order. A seek takes 6 msec per cylinder moved. How much seek time is needed for
(a) First-come, first served
(b) Elevator algorithm (initially moving upwards)
In all cases, the arm is initially at cylinder 20.

Q. 3 (a) Draw a resource allocation graph (also called a reusable resource graph) that represents a deadlock state. Your graph must contain at least two resources and at least two tasks. Each resource must contain 3 units.
(b) Of course when execution started there were no arcs in the resource allocation graph. Give a scenario starting from this initial condition of no arcs and ending in the graph you gave for part (a). That is, tell what requests and releases occur and in what order. For this part you should assume a naïve (i.e., optimistic) resource manager that grants every request as soon as it can.

Q. 4 (a) To what hardware concept is a signal closely related? Give two examples of how signals are used.
(b) Give two examples of the advantages of relative pathnames over absolute ones.

Q. 5 A process with transaction timestamp 50 needs a resource held by a process with transaction timestamp 100. What happens in the following?
(a) Wait-die
(b) Wound-wait

OPERATING SYSTEM CONCEPTS –3428
COURSE OUTLINES

Credit Hours: 4 (3+1) 3 hours lectures and 2 hours Lab per week

Unit No. 1 Introduction

Unit No. 2 Process

Unit No. 3 Deadlock
Resources, Deadlocks, Deadlock Detection, Deadlock Recovery, Deadlock Avoidance, Deadlock Prevention, Other Issues.

Unit No. 4 Memory Management
Memory Management without Swapping or Paging, Demand Paging, Swapping, Relocation, Virtual Memory, Page Replacement Algorithms, External Fragmentation.
Unit No. 5 File Systems

Unit No. 6 Input/Output
Principles of I/O Hardware, Principles of I/O Software, Disks, Clocks, Terminals

Unit No. 7 Introduction to Distributed Operating Systems
Network Operating System, Distributed Operating System.

Unit No. 8 Concurrency
Introduction to concurrency, Concurrent processes, concurrent transactions.

Unit No. 9 Case Studies
Introduction to Linux and Windows Operating Systems.